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MColl (MONTE Collocation)

Prototype software resulting from three-year R&D effort 
funded by NASA’s Advanced Multi-Mission Operations 
System (AMMOS)

Goal: Enable rudimentary, low-thrust trajectory 
optimization in MONTE

MONTE: JPL’s Mission-design and Operations Navigation 
Toolkit Environment

Collocation:  Numerical method for computing solutions 
to differential equations
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Collocation Overview
• Collocation starts with a discretized trajectory approximation defining 

nodes of polynomials

• The collocation problem is ‘solved’ when the time derivatives of the 
polynomials match the dynamical differential equations at every node

• Equivalent to implicit Runge-Kutta integration schemes (Weiss, 1974)

• Different strategies:
• Polynomial bases (Lagrange interpolation, B-splines, Chebyshev polynomials, 

etc.)
• Degree of polynomial
• Number of polynomial segments (one, a few, or many)
• Placement of nodes (LGL, LGR(r), LG, CGL, etc.)

• Historically used to solve BVPs (e.g., COV indirect method)
• In astrodynamics community today, more commonly used in direct transcription

• NLP that results from collocation is solved by some 3rd-party sparse optimization software

• Collocation software: COLSYS, COLDAE, AUTO, OTIS, SOCS, DIDO, 
DIRCOL, PROPT, GPOPS-II
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• After the collocation problem is solved, compute error for each 
segment

• Segment boundary times or polynomial degree adjusted to meet 
error tolerance

• Mesh refinement is equivalent in principle to adaptive step-size 
for explicit integration schemes

• Mesh refinement is essential for computing an accurate solution

• Strategies:
• Adjust degree of polynomial
• Equidistribute error

• Compare to higher order solution, such as nth + 1 degree
• Sundman transformation
• nth-derivative differencing scheme (de Boor, 1973)

• Change number of segments
• Once error is equally distributed, simple equation estimates number of 

segments needed to meet error tolerance
• Use 3rd-party explicit propagation software to check error (CEP)

Mesh Refinement
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• Written in Python

• Odd degree polynomials (n=3,5,7,9), LGL points
• Polynomials satisfy state and mass continuity at segment boundaries

• Spacecraft accelerations
• MONTE models: point mass or full gravity, SRP (solar sailing), drag, etc.
• High-fidelity SEP thruster, solar array, and bus power models

• Boundary constraints, path constraints, point constraints, and objective 
easy to specify
• Constraints and objective can be any MONTE computable quantity, or 

computed by user

• User can specify multiple legs with different parameters for optimization

• Derivatives computed on per-segment basis using MONTE’s built-in 
automatic differentiation capability

• NLP solved with sparse minimum-norm solution, or for direct 
optimization: IPOPT, KNITRO

• Mesh refinement algorithms available: de Boor, CEP, or hybrid

• Final solution validated by propagating with JPL’s DIVA explicit integrator

MColl Implementation & Capability
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SEP Throttling in MColl

• Segment start mass m0,i end mass mf,i are NLP variables

• For each segment, a ‘throttling’ inequality constraint 
function si is enforced such that
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Then the segment thrust Ti and mass flow ṁi are
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Tmax,i and ṁmax,i are polynomial functions of input power
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Lyapunov-to-Lyapunov Low-Thrust Transfer

• Initial spacecraft mass: 500 kg

• Thrust parameters: constant thrust 10 mN, Isp = 2,000 sec

• Objective: maximize final mass

• Compute time: 21 seconds

mf = 499.5 kg

Optimal thrust profile



Earth-to-Asteroid Rendezvous (ARRM)

• Initial spacecraft mass: 9,945 kg

• Thrust parameters: 3 HERMeS high-efficiency thrusters, 90% 
duty cycle, 1/r2 array with P0 = 47 kW, bus power 500W

• Objective: maximize final mass

• Compute time: 25 seconds (same in Mystic)

mf = 8,423 kg

Optimal thrust profile

nearly identical to Mystic

August 22, 2017 AAS/AIAA Astrodynamics Specialist Conference 9



Solar Sail Solar System Escape

• Initial state: 0.1 AU perihelion parabola, mass = 20 kg

• Thrust parameters: ideal sail, 50x50m2

• Objective: maximize final C3

• Compute time: 82 seconds (MALTO < 1sec)

Optimal thrust profile

final C3 = 4,381 km2/sec2

August 22, 2017 AAS/AIAA Astrodynamics Specialist Conference 10



Conclusion
• MColl prototype software result of multi-year R&D 

effort at JPL
• Goal: enable low-thrust optimization in MONTE

• The first year spent investigating various collocation 
and mesh refinement methods

• See paper for more details about algorithm

• Software is easy to use and has been tested on a 
variety of example problems

• Next step: infusion into MONTE
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Back-Up Slides

August 22, 2017 AAS/AIAA Astrodynamics Specialist Conference 12



x1,3

p1(-1) p1(1)
x1,1

p1(𝜏2)

p2(-1) p2(1)
x1,5

p1(𝜏4)

x2,3

x2,1
p2(𝜏2)

x2,5
p2(𝜏4)

x1,3

x1,1

p1(𝜏2) p1(𝜏4)
x1,5

x2,3

x2,1

p2(𝜏2) p2(𝜏4)

x2,5

p1(𝜏4)

x1,1 p1(1)

p1(𝜏2)
x1,3

x1,5

p2(1)

p2(𝜏4)
p2(𝜏2)

x2,3

x2,5

x2,1
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Node Placement Strategies 
5th degree polynomials

Constrained node

Variable node
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Mesh Refinement Diagram
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Mesh Refinement Demonstration
Two-Body Ellipse Example
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Initial coarse mesh
Segments equally spaced in time

Number segments unchanged
Error equally distributed

Fully refined mesh
Number of segments updated
Error Equally distributed


